Synaptosomal Toxicity and Nucleophilic Targets of 4-Hydroxy-2-Nonenal

نویسندگان

  • Richard M. LoPachin
  • Brian C. Geohagen
  • Terrence Gavin
چکیده

4-Hydroxy-2-nonenal (HNE) is an aldehyde by-product of lipid peroxidation that is presumed to play a primary role in certain neuropathogenic states (e.g., Alzheimer disease, spinal cord trauma). Although the molecular mechanism of neurotoxicity is unknown, proteomic analyses (e.g., tandem mass spectrometry) have demonstrated that this soft electrophile preferentially forms Michael-type adducts with cysteine sulfhydryl groups. In this study, we characterized HNE synaptosomal toxicity and evaluated the role of putative nucleophilic amino acid targets. Results show that HNE exposure of striatal synaptosomes inhibited (3)H-dopamine membrane transport and vesicular storage. These concentration-dependent effects corresponded to parallel decreases in synaptosomal sulfhydryl content. Calculations of quantum mechanical parameters (softness, electrophilicity) that describe the interactions of an electrophile with its nucleophilic target indicated that the relative softness of HNE was directly related to both the second-order rate constant (k(2)) for sulfhydryl adduct formation and corresponding neurotoxic potency (IC(50)). Computation of additional quantum mechanical parameters that reflect the relative propensity of a nucleophile to interact with a given electrophile (chemical potential, nucleophilicity) indicated that the sulfhydryl thiolate state was the HNE target. In support of this, we showed that the rate of adduct formation was related to pH and that N-acetyl-L-cysteine, but not N-acetyl-L-lysine or beta-alanyl-L-histidine, reduced in vitro HNE neurotoxicity. These data suggest that, like other type 2 alkenes, HNE produces nerve terminal toxicity by forming adducts with sulfhydryl thiolates on proteins involved in neurotransmission.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantitative structure-activity relationship for 4-hydroxy-2-alkenal induced cytotoxicity in L6 muscle cells.

Lipid peroxidation is one of the most important sources of endogenous toxic metabolites. 4-Hydroxy-2-nonenal (HNE) and 4-hydroxy-2-hexenal (HHE) are produced in several oxidative stress associated diseases from peroxidation of n-6 and n-3 polyunsaturated fatty acids, respectively. Both are able to form covalent adducts with many biomolecules. Particularly, proteins adduction can induce structur...

متن کامل

REVIEW Synaptic Cysteine Sulfhydryl Groups as Targets of Electrophilic Neurotoxicants

Many structurally diverse chemicals (e.g., acrylamide, 2,4dithiobiuret, methylmercury) are electrophiles and cause synaptic dysfunction by unknown mechanisms. The purpose of this Forum review is to discuss the possibility that highly nucleophilic cysteine thiolate groups within catalytic triads of synaptic proteins represent specific and necessary targets for electrophilic neurotoxicants. Most ...

متن کامل

Synaptic cysteine sulfhydryl groups as targets of electrophilic neurotoxicants.

Many structurally diverse chemicals (e.g., acrylamide, 2,4-dithiobiuret, methylmercury) are electrophiles and cause synaptic dysfunction by unknown mechanisms. The purpose of this Forum review is to discuss the possibility that highly nucleophilic cysteine thiolate groups within catalytic triads of synaptic proteins represent specific and necessary targets for electrophilic neurotoxicants. Most...

متن کامل

The lipid peroxidation product, 4-hydroxy-2-trans-nonenal, alters the conformation of cortical synaptosomal membrane proteins.

Alzheimer's disease (AD) is widely held to be a disorder associated with oxidative stress due, in part, to the membrane action of amyloid beta-peptide (A beta). A beta-associated free radicals cause lipid peroxidation, a major product of which is 4-hydroxy-2-trans-nonenal (HNE). We determined whether HNE would alter the conformation of synaptosomal membrane proteins, which might be related to t...

متن کامل

Quantitative Chemoproteomics for Site-Specific Analysis of Protein Alkylation by 4-Hydroxy-2-Nonenal in Cells

Protein alkylation by 4-hydroxy-2-nonenal (HNE), an endogenous lipid derived electrophile, contributes to stress signaling and cellular toxicity. Although previous work has identified protein targets for HNE alkylation, the sequence specificity of alkylation and dynamics in a cellular context remain largely unexplored. We developed a new quantitative chemoproteomic platform, which uses isotopic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 107  شماره 

صفحات  -

تاریخ انتشار 2009